Mark scheme - The Particle Model (H)

Question			Answer/Indicative content	Marks	Guidance
1			C V	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	Examiner's Comments The great majority of candidates gave the correct answer C.
			Total	1	
2			B $\sqrt{ }$	1 (AO1.1)	Examiner's Comments The majority of the candidates correctly recalled the diameter of the atom. A small but significant number of candidates incorrectly chose response A.
			Total	1	
3			D \checkmark	1 (AO2.1)	Examiner's Comments Most candidates correctly substituted the numbers into the given equation.
			Total	1	
4			A	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	
			Total	1	
5			B	1	
			Total	1	
6			C	1	
			Total	1	
7	a	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.001 / 1 \times 10^{-3}\left(\mathrm{~m}^{3}\right)$ award 2 marks $\begin{aligned} & 0.1 \times 0.1 \times 0.1 \checkmark \\ & =0.001 / 1 \times 10^{-3}\left(\mathrm{~m}^{3}\right) \checkmark \end{aligned}$	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times 2.2) \end{gathered}$	
		ii	Density $=$ mass/volume $/$ density is proportional to mass \checkmark (Cube B has $10 \times$ mass of cube A, so) density of cube B is $10 x$ density of cube A \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 2.2) \end{gathered}$	ALLOW density is 10 times larger ALLOW numerical values used to show density of cube B is $10 x$ density of cube A
	b		Particles (in solid) are close(r) together / (more) compact / ORA / AW \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	Assume answer refers to a solid unless indicated otherwise

| | | Total | 5 | |
| :--- | :--- | :--- | :--- | :---: | :---: |

